

Abstract— A novel client puzzle protocol, the

Memoryless Puzzle Protocol (MPP), is proposed and
investigated. The goal is to show that MPP is a viable
solution for mitigating distributed denial-of-service (DDoS)
attacks in an anonymous routing environment. One such
environment, Tor, provides anonymity for interactive
Internet services. However, Tor relies on the Transport
Layer Security (TLS) protocol, making it vulnerable to
distributed denial-of-service (DDoS) attacks. Although
client puzzles are often proposed as a solution to denial-of-
service attacks, this research is the first to explore TLS
DDoS attack mitigation in the Tor anonymous routing
environment.

Using the MPP, the central processing unit (CPU)
utilization and user-data latency measures are analyzed
under four increasing DDoS attack intensities and four
different puzzle probability distribution levels. For results,
typical CPU utilization rates of 80-100% drop to below
70% signifying successful mitigation. Furthermore, even if
a client only has a 30% chance of receiving a puzzle or the
maximum puzzle strength is used, MPP effectively
mitigates attacks. Finally, user-data latency decreases
approximately 50% under large-scale attacks. Hence, the
MPP is a suitable solution for increasing the robustness
and reliability of Tor.

I. INTRODUCTION
very common form of distributed denial of service
(DDoS) attack in today’s networks consist of a multitude

of malicious clients flooding the network in the direction of a
particular server to prevent legitimate clients from receiving
such server service. Anonymous communications systems
(ACS) that rely on an overlay network of servers to provide
anonymity service are vulnerable to such DDoS attacks.

Tor [1] is one such ACS. Tor provides anonymous
interactive Internet services like web, internet relay chat (IRC),

Disclaimer: The views expressed are those of the author(s) and do not reflect
the official policy or position of the United States Air Force, Department of
Defense, or the U.S. Government.

and secure shell (SSH). Unfortunately, malicious zombies or
bots [2] are more quickly controlling and managing IRC
networks, or botnets, to launch DDoS attacks [3]. In 2003, for
example, one honeypot research project saw 15,164 unique
zombies form a large botnet within days [4]. In 2004, the
Witty worm created 12,000 zombies within 45 minutes [5].
Botnets may send attack commands via IRC or peer-to-peer
(P2P) channels [6]. The DDoS attacks use Transport
Communications Protocol (TCP) SYN packet and User
Datagram Protocol (UDP) flooding or more sophisticated
techniques to degrade or eliminate legitimate user service. The
common defenses of anomaly detection, rate-limiting and
filtering may be ineffective under a full botnet attack [6]. A
typical defense depends on a high level of end user internet
security and privacy awareness. In addition, recent research
into the Secure Overlay Services (SOS) [7] architecture,
similar to Tor’s onion routing architecture, has demonstrated
the ability to proactively defend against a web denial of service
attack.

In this paper, the goal is to show that MPP is a viable
solution for mitigating DDoS attacks on Tor’s interactive
Internet services such as an anonymous web server. Client
puzzles are investigated to protect against the inherent TLS
protocol vulnerability and mitigate DDoS attacks. For Tor,
puzzles are used to keep onion routers (OR) from completing
the large number of decryption operations forced upon them
during an attack. Of concern is the impact the client puzzle
defensive technique has on OR CPU utilization and user-data
latency. Since the OR pushes CPU load back onto clients
during a DDoS attack, OR CPU utilization and latency are
important parameters to assess puzzle effectiveness in
maintaining service availability and preserving anonymity for
legitimate clients.

In Section II, the implementation of MPP is delineated. In
Section III, the analysis of OR CPU utilization and user-data
latency using MPP under increasing attack intensities and
differing probability distribution levels are examined. In
Section IV, a succinct summary and conclusion are given.

Using Client Puzzles to Mitigate Distributed
Denial of Service Attacks in the Tor Anonymous

Routing Environment
Nicholas A. Fraser, Douglas J. Kelly, Richard A. Raines, Rusty O. Baldwin, and Barry E. Mullins

Department of Electrical and Computer Engineering
Air Force Institute of Technology

{nicholas.fraser, douglas.kelly, richard.raines, rusty.baldwin, barry.mullins}@afit.edu

A

U.S. Government work not protected by U.S. Copyright

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2007 2. REPORT TYPE

3. DATES COVERED
 00-00-2007 to 00-00-2007

4. TITLE AND SUBTITLE
Using Client Puzzles to Mitigate Distributed Denial of Service Attacks in
the Tor AnonymousRouting Environment

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Electrical and Computer Engineering,Air Force Institute
of Technology,Dayton,OH

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM002055. Proceedings of the 2007 IEEE International Conference of Communications (ICC
2007) Held in Glasgow, Scotland on June 24-28, 2007. U.S. Government or Federal Rights License

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

II. PUZZLE IMPLEMENTATION

Client puzzles have been used as a cryptographic
countermeasure to mitigate denial of service attacks [8]. In
addition, client puzzles have been used to defend web servers
running the Secure Sockets Layer (SSL) protocol [9]. Many
others also used client puzzles [10, 11, 12, 13, 14, and 15]. In
such schemes, the client solves a given puzzle before
establishing a SSL/TLS session with a server. The client is
forced to expend computational resources prior to requesting
the server to carry out expensive operations to mitigate DDoS
attacks. A description of the MMP implementation follows.

A. Description

The proposed MPP for Tor's OR is shown in Figure 1. The
MPP calls for an OR to construct a 512 bit string by
concatenating (|) a timestamp (TS), a MD5 hash of its public
key (K), and a random nonce (x). The string is hashed using
SHA-1 to form a 160 bit string S. To complete the puzzle, the
k lower ordered bits of x are set to zero to form x' and a keyed-
hash message authentication code (HMAC) [16] of S is
computed. HMAC is a secure hash function, like MD5 or
SHA-1, wherein the user supplies a message, in this case S,
and a secret key. If an OR is under attack and thus distributing
puzzles, it probabilistically sends TS, x', k, S, and HMAC(S)
when a TLS connection request is received from either a
malicious zombie or legitimate onion proxy (OP). Alleviating
the workload of the OR and, to a lesser extend, legitimate
clients is achieved by lowering the probability p of generating,
sending and receiving a puzzle.

When an OP receives a puzzle, it verifies the TS is current
before concatenating TS, a hash of the OR's public key, and x'.
The OP solves the puzzle via a brute force approach by
generating permutations for the k bits, hashing individual
solutions, and comparing their hash values to S. Once the OP
discovers x, it returns to the OR TS, x, and HMAC(S).

To verify the OP has submitted a correct solution, the OR
confirms TS is current and then hashes (TS|K|x) = S' where x is
supplied by an OP. The OR confirms it constructed the puzzle
by verifying HMAC(S') = HMAC(S). If a match is confirmed,
the OR completes the TLS handshake.

MPP requires an OR execute two hash functions each time it
supplies a puzzle and two hash functions when it verifies a
solution. No state information is maintained even after a client
has correctly solved a puzzle. A client can re-use a puzzle but
only during its time window. Puzzle solutions cannot be pre-
computed as the timestamp and a different x are part of the
puzzle. Finally, by not sending the hash of an OR's public key,
each OP retrieves this information locally and cannot be forced
to solve another OR's puzzle.

A DDoS attack targeting Tor ORs using the TLS protocol is
unavoidable, but it is possible to limit its effect. Additionally,

Figure 1: Proposed MPP

To mitigate a DDoS attack, the OR creates a specific strength puzzle based on
threat/attack level and probabilistically sends the client a stateless Puzzle, the
client replies with a brute force solution, and OR confirms before completing
the TLS handshake and committing resources.

it is assumed an attacker likely possesses a collection of
unwitting computer systems, like a botnet, to conduct their
nefarious activity. These systems will have a wide range of
computational capabilities and are not likely to be high-end
processors specifically used to target Tor ORs. For this reason
memory-based proof-of-work mitigation techniques [17] are
not used. Also, Tor establishes multiple TLS connections at
startup and refreshes these over time in the background. As a
result, a user is assumed not to experience the TLS handshake
delay given the 100 or fewer zombies in this study. However,
if a reasonable-sized botnet of 10,000 zombies attacks, this
assumption is unlikely to hold. Furthermore, legitimate clients
are penalized if the malicious zombies are collectively more
powerful. The implementation details are discussed next.

B. Implementation Details

Tor uses the OpenSSL library [18] for the TLS handshake.
The 0.9.8 version of this C library is modified to incorporate
client puzzles. A puzzle library is created and tested which
contains the data structures for a puzzle, a puzzle solution and
three functions: create, solve, and verify. These functions
implement the MPP with only a few exceptions. First,
timestamp verification is not implemented. Second, the client
does not retrieve the public key of the server before solving a
puzzle. Instead a hard-coded fake key is hashed by the client.
The resulting hash is available only to create and verify
functions. Finally, the solve function solves a puzzle by
iterating through all the possible solutions. For example, if
k=4, the order solutions attempted are 0x0, 0x1, 0x2, ..., 0xf.
Other methods are possible like starting at 0xf and

OR

OP

Client Hello

Server Hello

Certificate

Puzzle (TS, x’, k, S, HMAC(S))

Puzzle Solution (TS, x, HMAC(S))

Server Done

OR generates x and TS,
periodically decides k,
calculates S and
HMAC(S) and sends
stateless puzzle with
probability p.

OP confirms TS and
calculates S’ using x.
If HMAC(S’) = HMAC(S)
then the OR commits
resources.

OP verifies TS and solves
for x by brute force from
SHA-1(TS|MD5(K)|x) = S.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

Figure 2: Modified TLS Handshake Sequence.
Server sets new SSL puz field to non-zero value and computes Tor-based
puzzle strength and probabilistically distributes “Puzzle” message to clients.
Client replies with “Puzzle Solution” message.

decrementing or randomly selecting a solution. In the latter
case, failed solutions must be saved or solutions must be
allowed to repeat. This is important because malicious
individuals with access to the code could modify the create
function so that all clients are forced to iterate through all
possible solutions.

OpenSSL's TLS handshake implementation is modified with
two new messages, the Puzzle and Puzzle Solution messages.
The message sequence is shown in Figure 2.

Puzzle messages are only sent when a puzzle needs to be
solved, i.e., when k>0. This is accomplished by adding a
variable inside the SSL data structure. This integer variable,
called puz, is set to zero when the SSL structure is initialized.
A server application using the modified OpenSSL library
sends a puzzle by setting puz to a non-zero value. How this
value is calculated is left to the application.

Tor version 0.1.1.7-alpha is modified so ORs can assign
puzzle strength and distribute puzzles during a TLS
connection. Puzzle strength is determined by taking into
account the overall OR CPU utilization. This is done in
consideration of other services running on the OR.

These other services, along with the Tor service, might
increase CPU utilization to the point where even a small attack
could result in significant delays. The algorithm in iostat [19]
is used to determine CPU utilization. To avoid incorrectly
reacting to single spikes in CPU utilization, an average CPU
utilization is used. More specifically, Tor's run function is
executed every second. In this function, CPU utilization is
polled and recorded in a circular array with five elements.
When a connection request arrives, the average OR CPU
utilization of the array is used to calculate the puzzle strength.
The puzzle strength is the product of the average utilization
percent and the maximum puzzle strength. This value can be
easily changed by anyone with access to the code. The benefit
of using an average is that an adversary is likely to find it
difficult to hold a server's puzzle strength constant.

To further control puzzle distribution, a probabilistic

decision variable is used. The variable is assigned a value each
time a connection request occurs and is compared to a pre-
configured threshold which determines if a puzzle should be
sent. This feature is used to explore whether attacks can be
mitigated without distributing a puzzle for every connection.
Finally, Tor can easily be modified so that both client puzzles
and the probabilistic decision feature can be turned off and on.
The network topology setup is specified next.

C. Setup

The network topology as shown in Figure 3 consists of one
OR, one client/server, and eight attack machines. The OR and
client/server are 800 MHz machines with 256 MB RAM. The
eight attackers are composed of five 1.7 GHz machines with
256 MB RAM while the remaining machines have 1.5 GHz,
2.4 GHz, and 2.0 GHz processors with 256 MB, 512MB, and
1GB RAM respectively. The number of attackers and their
capability differences are limited by machine availability.

The attack program is developed using Tor's own functions.
The user supplies the IP address of the victim, the number of
children to be spawned, and a random number seed. Upon
execution, the program spawns the correct number of children
and uniquely seeds a random number generator for each
process. Next, each process sleeps a random amount of time
between zero and five seconds before establishing a TLS
connection. Once established, the connection is terminated
and the process again sleeps before again initiating a TLS
connection.

By varying the number of processes in the attack program,
the level (intensity) of the attack is varied. Moreover, the
attack network accurately emulates a botnet: a master attack
machine, when instructed to launch (conclude) an attack
against the OR, signals the remaining seven machines to start
(stop) attacking as well.

Figure 3: Network Topology.
One OR victim, five identical and three dissimilar attack clients emulating a
botnet, and one client server connected via a 100Mbps Ethernet Hub.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

All machines used during experiments are installed with
Fedora Core 2. To measure average CPU utilization, the OR
victim runs vmstat and sends the output to a file. To measure
latency, a TCP client and server sends latency probes through
the OR. When the client sends a packet, it inserts a timestamp.
When the packet is received by the server, it records the client
timestamp and the time the packet arrived at the server to a
file. These timestamps are used to calculate the latency of the
packet in microseconds. The analysis is explained next.

III. ANALYSIS

This section presents the performance analysis of the MPP.
The analysis determines the effectiveness of the protocol using
a puzzle distribution density function designed to defeat hash
function DDoS attacks and limit the number of puzzle
messages traversing the Tor network. Section A reveals the
average CPU utilization performance results. Section B shows
the user-data latency performance results.

A. CPU Utilization

To determine average CPU utilization, vmstat on the victim
sends utilization statistics to a file every five seconds. Tor is
configured to send a puzzle with probability p. Five
experiments for each attack level (18, 38, 58, and 100
processes) are executed for seven minutes with one minute of
idle time between each trial. By attacking for seven minutes
and collecting utilization measurements every five seconds,
sufficient data can be sampled while at the same time
minimizing the amount of I/O required to record the data.

The victim has six configurations. The first configuration is
an unmodified installation of Tor and OpenSSL. The
remaining configurations use the modified Tor and OpenSSL
but differ in the probability they will send a puzzle (0.0, 0.3,
0.5, 0.7, and 1.0).

First, the CPU utilizations from each of the four attack
levels are measured to determine if an attack is actually taking
place. The victim is a single OR; thus, the results are a best-
case measurement. An attack is successful if CPU utilization
exceeds 70%. This number is chosen because administrators
often have “reserve” utilization available for unexpected
events.

The average CPU utilization for an OR under attack from
eight attack machines using the various process levels is shown
in Figure 4. Puzzles are not distributed to mitigate the DDoS
attack.

The solid line is the modified OpenSSL library and Tor
application installation. The dashed line is the unmodified
OpenSSL library and Tor application default installation.

Figure 4: Attack Effects on Average CPU Utilization.

58 and 100 bots attacks successful (>70%).
Modified installation incurs overhead (≤10%).

As the Figure 4 shows and t-tests confirm, the CPU utilization
is statistically greater at each level of attack intensity, with the
exception of the 100 process attack.

For both installations, only the 58 and 100 process/bots
attacks are considered successful since an average of at least
80% to 100% CPU utilization is achieved, respectively. The
difference between the solid and dashed lines identifies the
overhead induced when using modified Tor. The puzzle
overhead increase never turns any of the non-attacks (18 and
38) into attacks, i.e., does not exceed 70%. Thus, the average
CPU utilization due to overhead is approximately 7% and
never exceeds 10%.

 The average CPU utilization for each attack level when
puzzles are distributed according to the various probabilities is
shown below in Figure 5.

Figure 5: Average CPU Utilization.

58 and 100 bots DDoS attacks mitigated (<70%) for all probability levels.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

Of foremost importance is that the 58 and 100 process/bots
attacks are mitigated. In fact, they are mitigated so well, they
can no longer be classified as attacks as all are below 70%.
Furthermore, mitigation appears to improve as the puzzle
distribution probability increases because the number of clients
solving puzzles at any given time also increases. If clients are
solving puzzles that means the server is not decrypting pre-
master secrets. The only exception is when an 18 process
attack is used. Such a result is likely due to weak puzzles
created because of the weak attack.

Interestingly, a probability level of 0.3 is almost as effective
at mitigating attacks as the other probability levels. This trend
is likely due to the use of 30 as maximum puzzle strength.
During the attack, a client will either receive a puzzle or not.
If the client does not receive a puzzle, the request increases the
CPU utilization. If the client does receive a puzzle, it is likely
a strong one, i.e., greater than 25, because most clients have
not received puzzles. Eventually, all attacking clients receive
puzzles. Because the strengths are so strong the attack is
effectively mitigated. For all attack and probability levels, an
average utilization below 70% is achieved.

The final point of interest is the knee-shaped curve in
relative mitigation performance between 58 and 100 process
attacks. The 100 process attack appears to perform better than
the 58 process attack. The reason is that too many attack
processes execute on a single machine; thus, puzzles are solved
at a slower rate. This causes an effect similar to solving a
stronger puzzle. This experimental constraint was due to
limited availability of attack computers.

CPU utilization given different puzzle strengths is shown in
Figure 6. The most significant differences occur at the 100
process attack level. No puzzles achieve 100%, puzzle
strength of 20 achieves 87% and puzzle strength of 30
achieves less than 60% CPU utilization, respectively.

A similar but more tightly bounded trend holds for the 58
attack process level. Hence, only increasing puzzle strength to

Figure 6: Puzzle Strength.

Maximum strength puzzle (MPS=30) mitigates attack (utilization <60%).

the maximum of 30 MPS mitigates a DDoS attack at the 58
and 100 process levels. The user data latency results are
discussed next.

B. User Data Latency

To measure user-data latency, the victim is configured five
ways. The first does not use client puzzles to protect against
DDoS attacks. The other four use client puzzles at different
probability levels of 0.3, 0.5, 0.7 and 1.0. Experiments are run
for 13 minutes. Probes are sent at a rate of 10 per second. For
the first three minutes the OR is not under attack. This allows a
baseline to be established. After three minutes, an attack is
initiated where 18, 38, 58, or 100 processes are distributed
across the eight attack machines. Each attack lasts for seven
minutes. The experiment ends after three additional minutes
of sending probes.

User-data latency with increasing attack intensity is shown
in Figure 7.

Figure 7: Attack Effects on Average Latency.

Larger attacks incur higher latency up to 80,000 microseconds.

As expected, the higher the attack intensity the slower the

average user-data latency. The average latency of the highest
level attack, 100 processes, is 80,000 microseconds.
Achieving low-latency user-data delivery is a fundamental
objective of Tor. When not under attack, user-data is delivered
from the client to the server in approximately 1400
microseconds, i.e., almost instantaneously. Of course, data
does not traverse multiple ORs. Plus, the propagation delay
and network congestion are negligible. If client puzzles are
used to mitigate an attack, the increase in latency is reduced.
The average latency for each attack level at the different
probability levels is shown in Figure 8. The 18, 38 and 58
process/bots attack latency measurements are not statistically
different across probability levels. The 100 process/bots attack
latency is statistically different across probability levels but the
latency is minuscule and thus inconsequential.
 However, the 100 process/bots attack latency is at least

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

Figure 8: Average Latency.

Reduced latency for larger scale attacks for all probability levels.
(>50% for 100 process and <50% for 58 process).

54% lower for probability 1.0 than in the Fig. 7 (37,000 versus
80,000 microseconds). The 58 process/bots attack latency is
also lower (~30,000 versus 40,000 microseconds). An analysis
of variance (ANOVA) reveals that neither the probability nor
the interaction between attack level and probability contribute
significantly to latency variation at the 95-percentile level.
This neither strengthens nor weakens the assertion that
distributing puzzles with a probability of 0.3 effectively
mitigates the hash function attack and decreases the number of
puzzle messages traversing the Tor network. So the
differences in CPU utilization caused by probability changes
are not enough to affect latency.

Hence, distributing puzzles 30% of the time is a feasible
solution to both the decryption and hash function DDoS
attacks. Although such a decision is not likely to significantly
affect latency, it does make the integration of the MPP more
appealing for Tor administrators. The conclusion is given
next.

IV. SUMMARY AND CONCLUSION

In this paper, the novel client puzzle protocol MPP is

proposed to mitigate TLS DDoS attacks in the Tor routing
environment. Without MPP and under 58 and 100 botnet
DDoS attacks, legitimate client anonymous service is
adversely affected as indicated by an 80 to 100% CPU
utilization rate on the onion router. However, with MPP and
under similar DDoS attacks, legitimate client anonymous
service improves as indicated by a less than 70% CPU
utilization rate on the onion router for all four probability
distribution levels. Additionally, with MPP and no attacks,
only a 10% or less CPU utilization overhead is incurred on the
onion router. Also, user-data latency decreases approximately
50% under the large-scale attacks. Hence, using MPP

successfully mitigates malicious TLS DDoS attacks.
Moreover, even if a client only has a 30% chance of

receiving a puzzle or the maximum puzzle strength is used,
MPP effectively mitigates attacks. Also, the MPP puzzle
probability distribution and the maximum puzzle strength are
customizable to respond to a particular threat environment.
Hence, MPP is a viable and flexible solution for mitigating
DDoS attacks in an anonymous routing environment.

Extensions to this research might explore paths that mirror
more closely the length and traffic volume across multiple Tor
onion routers. This would provide additional insight into the
suitability of MPP as a solution for increasing the robustness
and reliability of Tor in preserving anonymity for interactive
Internet services.

REFERENCES

[1] Dingledine, Roger, N. Mathewson, P. Syverson. “Tor: The Second
Generation Onion Router”. 4th Proceedings of the 13th USENIX Security
Symposium, pp303-320, August 2004.
[2] R. Puri, "Bots & Botnets: An Overview," Security & Privacy Magazine,
IEEE , vol.1, no.4, pp. 87-90, July-August 2003.
[3] T. Holz, "A short visit to the bot zoo [malicious bots software]," Security &
Privacy Magazine, IEEE, vol.3, no.3, pp. 76-79, May-June 2005.
[4] B. McCarty, "Botnets: big and bigger," Security & Privacy Magazine,
IEEE , vol.1, no.4, pp. 87-90, July-August 2003.
[5] C. Shannon and D. Moore, “The Spread of the Witty Worm,” IEEE
Security & Privacy, vol. 2, no. 4, pp. 46–50, 2004.
[6] G.P. Schaffer, "Worms and viruses and botnets, oh my! Rational responses
to emerging Internet threats," Security & Privacy Magazine, IEEE , vol.4,
no.3, pp. 52-58, May-June 2006.
[7] A.D. Keromytis, V. Misra, and D. Rubenstein, ”Secure Overlay Services
(SOS)”, Final Technical Report, AFRL-IF-RS-TR-2004-236, Columbia
University, August 2004.
[8] A. Juels, A. and J. Brainard, “Client Puzzles: A Cryptographic Defense
against Connection Depletion,” 5th Network and Systems Security Symposium,
pp. 151–165, 1999.
[9] D. Dean, A. Stubblefield, “Using Client Puzzles to Protect TLS,”
Proceedings of the USENIX Security Symposium, 2001.
[10] T. Aura, P. Nikander, and J. Leiwo, “DOS-Resistant Authentication with
Client Puzzles,” Lecture Notes in Computer Science, vol. 2133, 2001.
[11] J. Leiwo, T. Aura, and P. Nikander, “Towards Network Denial of Service
Resistant Protocols,” in SEC, pp. 301–310, 2000.
[12] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. Wallach,
“Security for Peer-to-Peer Routing Overlays,” in Proceedings of OSDI,
December 2002.
[13] M. Abadi, M. Burrows, M. Manasse, and T. Wobber, “Moderately Hard,
Memory-bound Functions,” 2003.
[14] I. Clarke, O. Sandberg, B. Wiley, and T. Hong, “Freenet: A Distributed
Anonymous Information Storage and Retrieval System,” Lecture Notes in
Computer Science, vol. 2009, pp. 46+, 2001.
[15] C. Castelluccia, E. Mykletun, G. Tsudik, “Improving Secure Server
Performance by Re-balancing SSL/TSL Handshakes,” ASIACCS’06, 2006.
[16] H. Krawczyk, R. Canetti, M. Ballare. “Request For Comments (RFC)
2104 – HMAC: Keyed-Hashing for Message Authentication”. URL
http://www.faqs.org/rfcs/rfc2104.html, February 1997
[17] Abadi, Martin, M. Burrows, M. Manasse, T. Wobber. “Moderately hard,
memory-bound functions”. ACM Trans. Inter. Tech., 5(2):299-327, 2005.
[18] D.G. Andersen. “Mayday: Distributed Filtering for Internet Services”. 4th
Usenix Symposium on Internet Technologies and Systems., Seattle WA, USA,
March 2003.
[19] S. Godard. iostat. http://perso.wanadoo.fr/sebastien.godard/, January
2005.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

	Select a link below
	Return to Main Menu

	Select a link below
	Return to Main Menu

